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Abstract

Autonomous systems play a crucial role in various aspects of modern transportation, agriculture,

and healthcare. Navigation is a critical component of autonomous systems, enabling them to

understand their position and interact with the surrounding environment. This requires the use

of different sensing technologies such as GPS, IMU, and vision. Among these, vision sensors are

exceedingly versatile and rich in information. One of the primary channels of visual information

used in nature is observed motion in the scene, known as optical flow. With a brain weighing less

than a milligram, bees exploit optical flow to successfully navigate to and from food sources that

may be located 10km away from their hive. Considering its tiny brain, researchers regard the bee

as the minimal working example of a complete visual navigation solution.

Decades of research have sought to replicate the bee’s remarkable navigation capabilities in en-

gineered solutions. In practice, optical flow is measured by applying algorithms to image sequences

captured by cameras and has been leveraged in computer science and engineering to improve po-

sition and orientation (pose) estimates of navigation systems. However, the variability of optical

flow measurements is difficult to characterise, as it depends not only on the imaging sensor but

also on environmental lighting and texture, as well as the algorithms employed. Previous models

have assumed a Gaussian noise distribution, which is convenient for posing egomotion estimation

as a Gaussian least-squares problem. However, recent research has shown that this assumption

can be inadequate, leading to errors in pose estimation and uncertainty measures. Consequently,

there are ongoing efforts to develop new models and algorithms that improve the estimates of pose

and motion in autonomous systems that use vision-based navigation.

This thesis aims to address these challenges. Firstly, a novel texture-based likelihood model

for optical flow is developed that utilises a Laplace-Cauchy mixture (LCM) distribution. The

likelihood adheres to peaks and tails of the optical flow error distributions observed in empirical

data, whereas the traditional Gaussian assumption is restrictive in describing this phenomenon.

Compared to the empirical characteristics, the LCM distribution has 94% less error than the tradi-

tional Gaussian model and 48% less error than contemporary models, according to the Kolmogorov-

Smirnov statistic. It is demonstrated on the KITTI dataset to improve visual odometry estimation

accuracy and minimise position drift by at least 39%, surpassing the performance of previous mod-

els. Secondly, to use the novel LCM likelihood model within a Gaussian state estimator, we present

VIVO, an approximate Bayes visual odometry solution based on variational inference. VIVO fuses

information from a Wiener motion prior and optical flow measurements via the LCM likelihood

model. This leads to a 43% reduction in drift compared to maximum likelihood approaches with

the same likelihood model. Results show that VIVO results in a 57%–71% reduction in estimator

position drift compared to contemporary methods.

The presented work ushers the field of robotics toward a Bayesian treatment of optical flow

measurements enabling the fusion of flexible non-Gaussian optical flow error models within a

Gaussian assumed density filter. The development of the LCM likelihood model reduces the

chasm between approximate models and empirical data, enabling justifiable reasoning with optical

flow measurements. Overall, the work presented in this thesis enhances the componentry required

to perform Bayesian sensor fusion with vision data, enabling the inclusion of vision with sensors

such as GNSS, LiDAR and IMU, strengthening trusted autonomy.
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